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Fugitive Emissions: Motivation 

ÁFugitive emissions are significant sources: 

ÅUNFCCC 2011 estimates: 

Å576 Mt CO2 eq. 

Å3.8% of reported GHG emissions 

ÁFugitive emissions are often economic to mitigate based on 

value of gas alone 

ÁAdvances in IR camera technology and operation protocols 

have improved detection ability 

ÁQuantification remains a challenge 
 

ÁCould leaks be detected and quantified on a quasi- 

continuous basis? 
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Fugitive Emissions: Inverse / Sensor Oriented Analysis 

Is there another approach? 

ÁStarting from measureable sensor data, what source(s) 

would reproduce observations? 

ÅSensor data contains 

information about 

upwind concentrations 

ÁSimilar approaches 

used on continental 

scale since 1980s 

ÁProject considers two 

classes of methods: 

ÅStatistical (trajectory based) 

ÅAdjoint (gradient optimization based) 
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What is the concept? 

ÁSemi-permanent concentration sensor network combined 

with wind direction and speed 

ÅQuasi-continuous operation 

ÅDirected maintenance to  

new leaks as they appear 

ÅReduced costs and  

reduced emissions 

ÁCurrent research focus: 

1. Novel detection system design 

2. Numerical testing and development of statistical source location 

algorithms 

3. Simulation and development of advanced, gradient adjoint based, 

quantification algorithms 
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Tuneable Diode Laser Based 

Detector Network Design & Testing 



Fugitive Emission Sensing System 

ÁSensor system required attributes: 

ÅFast 

ïMany gas measurements over an array of sensors every minute 

ÅSelective 

ïLow interference from other 

constituents (CO2, H2O) 

ÅAccurate 

ÅSensitive 

ïMust measure small changes 

(0.25 ppm) in ambient methane 

concentration (~2.0 ppm) 

ÅRobust 

ïOperate in a harsh outdoor environment year-round 

ïFunction over a wide range of temperatures 



A Novel Fibre-optic-based TDLAS System 

ÁHow does it work? 
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A Novel Fibre-optic-based TDLAS System 

ÁHow does it work? 
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A Novel Fibre-optic-based TDLAS System 

ÁHow does it work? 
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A Novel Fibre-optic-based TDLAS System 

ÁHow does it work? 

S. B. Schoonbaert, . R. Tyner, J. Albert & M. R. Johnson (2014) Ambient 

Gas Quantification Using Multipoint Optical Detection, Air & Waste 

Management Association 107th Annual Conference, Long Beach, CA, 

June 24-27, 2014. 
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SOURCE LOCATION & 

QUANTIFICATION ALGORITHMS 



Tests on a Simplified Gas Plant Geometry 

ÁBasic gas plant 
layout meshed for 
numerical testing 

ÁDetailed wind 
modelling and 
simulated fugitive 
emissions 
releases 

ÁSimulation based 
development 
using both in-
house and 
commercial codes 



CFD Simulations 

 

ÁVideo shows 

plume in a 

realistic transient 

wind flow 

ÅInflow velocity 

profile from actual 

tower data 

ÅHighly dynamic, 

complex flow 

behavior and 

entrapment of gas 

in building wakes 
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2. Statistical Source Location: Summary 

ÁTrajectory-based algorithms show very good potential for 

leak location in complex environments 

Å C.A. Brereton, M.R. Johnson (2012) Identifying Sources of Fugitive 

Emissions in Industrial Facilities using Trajectory Statistical 

Methods, Atmospheric Environment, 51:46-55.  

ÁSuccess in using algorithms 

with pre-computed, simplified 

wind profiles raises possibility 

of quasi-continuous source 

detection 

ÁHowever methods shown up 

to now are only good for 

source locationé 
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3. Advanced Algorithms: Adjoint Methods 

ÁEarly-phase investigation of adjoint-based optimization 

to locate and quantify stationary fugitive emissions 

ÅAdvanced mathematical approach to solving ill-posed 

inverse problems 

ÅSimilar techniques have been implemented in a variety 

of fields 
 

ÁCurrent research focus is on development and 

practical implementation of algorithms 
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How Does it Work? 

ÁWant source(s) to reproduce observations  

ÅñObjective Functionò: measure of 

mismatch between measurements 

& model prediction 

 

 
c ¹ receptor measurements 

c* ¹ predicted receptor concentrations 

 

ÁFind the source(s) that minimizes f 

 

 

( )
21

*
2 receptors

f c c= -ä

X [m] 

Y [m] 
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Objective Function,  f 

Adjoint Sensitivity 

ɚ(c(x),c*)  

Optimization 

x(f, df/dx) 

Observations 

c* 

Objective 

Function  

f(c(x),c*) 

Gradient 

df/dx(ɚ,db/dx) 

ÅFind the source parameters 

s(x) that minimize f 

Objective 

Function  

f(c(x),c*) 

Forward Model  

c(x) 

Guess Source  

s(x) 

Forward Model  

c(x) 

Guess Source  

s(x) 

Gradient 

df/dx(ɚ,db/dx) 

ÅNeed to know the gradient of 

f (how f changes with model 

inputs) 
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Optimization 

Forward Model  

c(x) 

Adjoint Sensitivity 

ɚ(c(x),c*)  

Optimization 

s(f, g) 

Observations 

c* 

Objective 

Function  

f(c(x),c*) 

Gradient 

df/dx(ɚ,db/dx) 

Guess Source  

s(x) 

Optimization 

x(f, df/dx) 

ÅFind the source parameters 

s(x) that minimize f 

ÅNeed to know the gradient of 

f (how f changes with model 

inputs) 

ÅFind it using the adjoint 

sensitivity method 

 

 

ÅStandard  gradient-based 

optimization algorithm 

Å L-BFGS-B 

Å Get a better source guess s(x)   

to minimize f(x) 
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Sample Results: 3D ï 4 Source Case 

Sensors 

Sources  

[1 kg/s/m3] 
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Sample Results: Adjoint Transport 

Y [m] 

Y [m] 

X [m] 

Sensors 

Sources  

[1 kg/s/m3] 
Wind primarily 

from South 

Forward Model  

c(x) 

Adjoint Sensitivity 

ɚ(c(x),c*)  

Optimization 

s(f, g) 

Observations 

c* 

Objective 

Function  

f(c(x),c*) 

Gradient 

df/dx(ɚ,db/dx) 

Guess Source  

s(x) 

Optimization 

x(f, df/dx) 

Adjoint Sensitivity 

ɚ(c(x),c*)  
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Sample Results: Adjoint Transport 

Y [m] 

Adjoint Variable [kg s/m3] 

Transport backwards from sensors 

to determine sensitivity 
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Sample Results: 3D ï 4 Source Case 
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X [m] 
Source 

Prediction 

Iteration 1 

Y [m] 

Forward Model  

c(x) 

Adjoint Sensitivity 

ɚ(c(x),c*)  

Optimization 

s(f, g) 

Observations 

c* 

Objective 

Function  

f(c(x),c*) 

Gradient 

df/dx(ɚ,db/dx) 

Guess Source  

s(x) 

Optimization 

x(f, df/dx) 

Adjoint Sensitivity 

ɚ(c(x),c*)  



Sample Results: 3D ï 4 Source Case 
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X [m] 
Source 

Prediction 

Iteration 30 

Y [m] 

Forward Model  

c(x) 

Adjoint Sensitivity 

ɚ(c(x),c*)  

Optimization 

s(f, g) 

Observations 

c* 

Objective 

Function  

f(c(x),c*) 

Gradient 

df/dx(ɚ,db/dx) 

Guess Source  

s(x) 

Optimization 

x(f, df/dx) 

Adjoint Sensitivity 

ɚ(c(x),c*)  



Sample Results: 3D ï 4 Source Case 
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X [m] 
Source 

Prediction 

Iteration 50 

Y [m] 

Forward Model  

c(x) 

Adjoint Sensitivity 

ɚ(c(x),c*)  

Optimization 

s(f, g) 

Observations 

c* 

Objective 

Function  

f(c(x),c*) 

Gradient 

df/dx(ɚ,db/dx) 

Guess Source  

s(x) 

Optimization 

x(f, df/dx) 

Adjoint Sensitivity 

ɚ(c(x),c*)  



Sample Results: 3D ï 4 Source Case 
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X [m] 
Source 

Prediction 

Iteration 100 

Y [m] 

Forward Model  

c(x) 

Adjoint Sensitivity 

ɚ(c(x),c*)  

Optimization 

s(f, g) 

Observations 

c* 

Objective 

Function  

f(c(x),c*) 

Gradient 

df/dx(ɚ,db/dx) 

Guess Source  

s(x) 

Optimization 

x(f, df/dx) 

Adjoint Sensitivity 

ɚ(c(x),c*)  



Sample Results: 3D ï 4 Source Case 
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X [m] 

Y [m] 

Synthetic Data Set 


